0
Posted on 1:32 AM by Hamid and filed under
prove 1=2
______________

Consider x^2 -x^2:
x^2-x^2=x(x-x).........eqn.1
also,x^2-x^2=(x+x)(x-x).......eqn.2
equating 1 n 2........x(x-x)=(x+x)(x-x)........
cancelling (x-x) both sides...........we get........
x=x+x
=> x=2x
cancelling x both sides.........
=> 1=2.....
hence proved.................
______________

To Prove 1 = 2
Let x = y
=> 2x - x = 2y - y
=> 2x - 2y = x - y
{taking 2 common in LHS}
=> 2(x - y) = (x - y)
=> 2 = 1
hence proved.....!!!
______________

x^2 = x*x
x^2=x+x+x.......(x times)
differentiating both sides...
2x = 1+1+1+.......(x times)
2x=x
2=1
______________
Source : Orkut Community
Stumble Upon Toolbar
0
Responses to ... Mathematics 1=2 ?

Post a Comment